LOS ÁNGELES. Un método más eficiente y preciso para identificar tumoraciones cancerosas en senos que analiza imágenes de tejidos mediante un ordenador, un proceso mucho más rápido que el tradicional, fue presentado hoy por la Universidad el Sur de California (USC).
“Es el principio de una revolución para usar el aprendizaje de máquina y obtener para el médico nueva información acerca del cáncer de seno”, aseguró David Agus, profesor de la Escuela de Medicina Keck y de la Escuela de Ingeniería Viterbi, de USC, y uno de los autores de la investigación.
“Podemos utilizarlo (este sistema) para establecer mejores tratamientos, dar información a los pacientes de manera más rápida y ayudar a más gente. Estamos liberando este hallazgo para ofrecer nueva información a los médicos y ayudar a tratar el cáncer”, aseguró Agus.
El investigador destacó que la clave para identificar y tratar el cáncer es conocer la naturaleza del tumor.
“Las células cancerosas que contienen receptores para el estrógeno y otras hormonas responden de forma diferente a las drogas que tratan este mecanismo”, añadió.
El sistema se basa en “enseñar” a un computador a analizar rápidamente imágenes de tumores cancerosos del seno para “identificar cuáles presentan receptores de estrógeno, un determinante clave en la prognosis y las opciones de tratamiento”.